3.8 – Graphing Polynomials and the Factor Theorem

Now that we have a way of expressing higher order polynomial functions in factored form we can re-visit graph a polynomial functions in standard form.

Ex. How could one graph \(f(x) = x^3 + 2x^2 - 5x - 6 \)

Using the factor theorem we can re-write as:

\[
 f(x) = (x + 1)(x^2 + x - 6) = (x + 1)(x + 3)(x - 2)
\]

So far we have been dealing with polynomial functions that have a leading coefficient of 1 in front of their highest degreeed term. This simplifies our evaluation process in trying to determine the first factor because we can just substitute in an integer value. When the leading coefficient is an integer other that 1, the possible factors to consider become more complex.

Ex.

\[
f(x) = 3x^3 + 19x^2 + 27x - 7
\]

Possible factors are:

\[
3x - 7 \quad 3x + 1 \quad x - 7 \quad x - 1 \quad 3x + 7 \quad 3x - 1 \quad x + 7 \quad x + 1
\]

Need to test:

\[
 f(7/3) \quad f(1/3) \quad f(7) \quad f(1) \quad f(-7/3) \quad f(-1/3) \quad f(-7) \quad f(-1)
\]

Testing fractions will involve more difficult algebra. One can use a graphing calculator to graph the function and then work backwards from the indicated zeros to see which of the above might be a factor.

In this example the graph crosses at \(x = 0.3333 \) means \(3x - 1 \) is a factor

Example 1:

List possible factors for;

\[
g(x) = 5x^3 + 3x^2 - 12x + 4
\]

Possible factors are:

\[
x + 1 \quad 5x + 4 \quad x + 2 \quad 5x + 2 \\
x - 1 \quad 5x - 4 \quad x + 2 \quad 5x - 2
\]

Need to test:

\[
f(1) \quad f(2) \quad f(4) \quad f(-1) \quad f(-2)
\]

From above we know factors and possible numbers to test. If some easier integral factors (i.e. \(x - 1 \)) present themselves you might take a chance and test these values, otherwise turn to the graphing calculator to help see zero:

Test \(g(1) = 0 \) \(\therefore x - 1 \) is a factor

Use Synthetic

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>3</th>
<th>-12</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>-4</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
5x^3 + 3x^2 - 12x + 4 = (x - 1)(5x^2 + 8x - 4) = (x - 1)(x + 2)(5x - 2)
\]

Example 2:

Graph the following function.

\[
g(x) = 5x^3 + 3x^2 - 12x + 4
\]

Use Decomposition or Quadratic formula to continue to factor the quotient
3.8 – Graphing Polynomials and the Factor Theorem Practice Questions

1. Sketch the following by hand using the factor theorem to help determine zero(s)/root(s) and check on calculator.

 a) \(f(x) = (x - 1)(x + 3)(x - 5) \)
 b) \(y = x^3 - 7x^2 - 6 \)
 c) \(y = x^3 + 5x^2 + 2x - 8 \)
 d) \(g(x) = x^4 - 2x^3 - 3x^2 + 4x + 4 \)

2. Using the graphing calculator to help estimate the factors for the following.

 a) \(6x^3 + x^2 - 46x + 15 \)
 b) \(6x^3 - 17x^2 + 11x - 2 \)
 c) \(18x^3 - 15x^2 - x + 2 \)
 d) \(4x^4 - 19x^3 + 16x^2 - 19x + 12 \)

3. Algebraically check/verify using expansion or the factor theorem that your answer to above question work.

4. A third degree polynomial equation has \(x = 2 \) as one of its roots. Given \(f(3/2) = 0 \), and \(f(4) = 50 \) find the function.

5. Consider the function \(h(x) = x^3 - 3x^2 - 9x + 2 \)

 a) Determine the x & y intercepts
 b) Determine local maxima and minima
 c) Graph the function
 d) State increasing intervals
 e) State decreasing intervals
 f) State x co-ordinates where function has a slope of zero

Answers
2. a) \((x+3)(3x-1)(2x-5)\)
 b) \((x-2)(3x-1)(2x-1)\) you will need to zoom in your window to get all the roots otherwise your calculator will only give \(x = \frac{1}{2} \) but you know there must be another to give you the leading co-efficient of 6
 c) \((3x+1)(3x-2)(2x-1)\)
 d) \((x-4)(4x-3)(x^2+1)\)
 4. \(f(x) = (x-2)(2x-3)(x+1) \)
 5. a) \(x = -2, 0.21, 4.79 \) and \(y = 2 \)
 b) max is \(y=7 \) min is \(y=-25 \)
 c) see graph below
 d) \(x<1 \) or \(x>3 \)
 e) \(-1<x<3\)
 f) \(x=3 \) & \(x=-1 \)
3.8 - Sketching Practice Sheets

3.8 – graphing polynomials and the factor theorem